νίτνο

Группа_____ U3178

Студент Гатауллина Алина Маратовна

Преподаватель Фокс М.Э.

Рабочий протокол и отчет по лабораторной работе № 3.01

Изучение электростатического поля методом моделирования

1. Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабо проводящей среде.

2. Задачи, решаемые при выполнении работы.

1. Изменить статическое электрическое поле на электрическое поле в слабо проводящей среде.

2. Установить эквивалентность уравнений и процессов, происходящих в электрическом и электростатическом полях.

3. Обосновать необходимость использования переменного тока низкой частоты вместо постоянного тока.

4. Доказать, что переменный синусоидальный ток в электролите не является потенциальным.

3. Объект исследования.

Электростатическое поле.

4. Метод экспериментального исследования.

Метод моделирования.

5. Рабочие формулы и исходные данные.

$$\begin{split} \varphi(\vec{r}) &= \frac{W_{\Pi}(\vec{r})}{\sqrt{\left(\frac{\partial f}{\partial a}\Delta_{a}\right)^{2} + \left(\frac{\partial f}{\partial b}\Delta_{b}\right)^{2} + \left(\frac{\partial f}{\partial c}\Delta_{c}\right)^{2}}} \qquad \langle E_{12} \rangle \cong \frac{\varphi_{1} - \varphi_{2}}{\ell_{12}} \qquad \vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q}, \end{split}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Вольтметр	Электронный измерительный	[0; 20] B	±0,005 B
2	Разлинованное дно ванны	Измерительный	[0; 280] мм	±0,5 мм

7. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Потенциал	Координаты X точек эквипотенциальной линии, мм				
й линии, В	При Y = 20 мм	При Y = 60 мм	При Y = 100 мм	При Y = 140 мм	При Y =180 мм
<i>φ</i> = 1,42	20,0	24,0	25,0	21,0	5.0
$\varphi = 3,09$	60,0	62,0	62,0	61,0	58,0
φ = 4,80	100,0	101,0	101,0	101,0	100,0
<i>φ</i> = 6,67	140,0	140,0	140,0	140,0	140,0
<i>φ</i> = 8,45	180,0	178,0	178,0	179,0	181,0
<i>φ</i> = 10,15	220,0	219,0	218,0	218,0	219,0
<i>φ</i> = 11,64	260,0	256,0	254,0	255,0	258,0

Таблица 1. Координаты точек эквипотенциальных линий и их потенциалы для конфигурации поля без проводящего кольца.

Потенциал	Координаты X точек эквипотенциальной линии, мм				
ўквипотенциально й линии, В	При Y = 20 мм	При Y = 60 мм	При Y = 100 мм	При Y = 140 мм	При Y =180 мм
<i>φ</i> = 1,93	20,0	23,0	23,0	21,0	8,0
<i>φ</i> = 3,86	60,0	64,0	51,0	53,0	57,0
<i>φ</i> = 5,61	100,0	82,0	75,0	83,0	102,0
φ = 6,60	140,0	140,0	140,0	140,0	140,0
φ = 7,72	180,0	198,0	209,0	201,0	185,0
<i>φ</i> = 9,15	220,0	226,0	229,0	225,0	219,0
<i>φ</i> = 10,96	260,0	258,0	259,0	259,0	259,0

Таблица 2. Координаты точек эквипотенциальных линий и их потенциалы для конфигурации поля с проводящим кольцом.

Длины участков силовых линий между точками в центре и в окрестностях электродов ванны:

 $l_{\rm u} = 19 \pm 0.5$ MM $l_{\rm n} = 18 \pm 0.5$ MM $l_{\rm n} = 18 \pm 0.5$ MM 2

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Напряженность в центре электролитической ванны:

$$E_{\rm L} = \frac{\varphi_{\rm l} - \varphi_{\rm l}}{l_{\rm L}} = \frac{6.67 - 4.80}{18} - 0.10 \, ({}^{\rm B})_{\rm MM}$$

Напряженность в окрестностях электродов:

$$E_{\pi} = \varphi_{3\bar{l}} \varphi_{4}$$
 3,09 - 1,42 B

 $E_{\rm n} = \frac{\varphi_5 - \varphi_6}{l_{\rm n}} = \frac{611,64 - 10,15}{19} = 0,08 \, (\frac{{\rm B}}{{\rm MM}})$

Поверхностная плотность электрического заряда на электродах:

$$\sigma = \varepsilon_{0} * = 8,85 \times 10^{-12} \times 0,09 = 0,8 \times 10^{-12} {\binom{\text{Kn}}{\text{M}^{2}}} = 8,85 \times 10^{-12} \times 0,08 = 0,7 \times 10^{-12} {\binom{\text{Kn}}{\text{M}^{2}}} = \varepsilon_{0} * E_{0} * E_{0}$$

следовательно разность потенциалов равна нулю.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Найдём погрешности напряжённостей для пустой ванны через частные производные:

$$\Delta(\varphi_{1} - \varphi_{2}) = \Delta\varphi_{M} = 0,005 \text{ B}$$

$$\Delta l = \Delta l_{M} = 0,5 \text{ MM}$$

$$\Delta E = \sqrt{(\frac{1}{2} + -\varphi_{1}))^{2} + (-\frac{\varphi_{1} - \varphi_{2}}{2} + \Delta l)^{2}} = \sqrt{(\frac{1}{2} + 0,005)^{2} + (-\frac{\varphi_{1} - \varphi_{2}}{2} + 0,003 (\frac{B}{2}))}$$

$$\Delta \varphi E = \sqrt{(\frac{1}{2} + \Delta(\Box - \varphi_{1}))^{2} + (-\frac{\varphi_{1} - \varphi_{2}}{2} + \Delta l)^{2}} = \frac{19}{18} \frac{361}{324} \text{ MM}$$

$$\Delta \varphi E = \sqrt{(\frac{1}{2} + \Delta(\Box - \varphi_{1}))^{2} + (-\frac{\varphi_{1} - \varphi_{2}}{2} + \Delta l)^{2}} = \frac{19}{18} \frac{361}{324} \frac{19}{324} \frac{361}{324} \frac{19}{324} \frac{361}{324} \frac{19}{324} \frac{19}{3$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимость потенциала ϕ от координаты (х) для пустой ванны.

График 2. Зависимость потенциала φ от координаты (x) при наличии проводящего кольца.

Сравнивая графики зависимостей, можно заметить, что линия тренда при пустой ванне практически совпадает с координатами полученных точек, в то время как при

наличии проводящего кольца точки сильнее «расходятся» друг от друга. Также мы видим, что угол наклона линии тренда при наличии проводящего тела меньше к оси ОХ.

$$E_{\mu} = 0,10 \pm 0,003 \left(\frac{B}{MM}\right)$$

$$E_{\pi} = 0.00 \quad 0,003 \left(\frac{B}{MM}\right)$$

$$E_{\pi} = 0,08 \pm 0,002 \left(\frac{B}{MM}\right)$$

$$\sigma = 0,8 \times 10^{-12} \left(\frac{K\pi}{2}\right)$$

$$\sigma = 0,7 \times 10^{-12} \left(\frac{M\pi}{2}\right)$$

$$\sigma$$

$$E_{min} = 0 \left(\frac{B}{MM}\right)$$

$$B$$

 $E_{max} = 0,51 ($ () MM

13. Выводы и анализ результатов работы.

В ходе лабораторной работы мы изучили распространения потенциала в присутствии и отсутствии проводящего тела. Были построены графики эквипотенциальных и силовых линий, а также определены минимальное и максимальное значения напряженности.

Максимальное значение напряжения было найдено в участке, где силовые линии были наиболее плотными, то есть, вблизи проводящего тела.

Функция потенциала ф и ее зависимость от координаты х были представлены на графике. Мы сделали вывод, что в первом случае зависимость была линейной, а при наличии проводящего тела она также была близка к линейной, но внутри кольца зависимость стала нелинейной из-за искривления силовых линий.

14. Приложение

В приложениях 1 и 2 представлены графики эквипотенциальных и силовых линий поля при отсутствии и присутствии проводящего тела соответственно.